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Linear constitutive
equations

8 1 Constitutive equations and ideal materials

The results given so far in this book apply equally to all materi-
als. In themselves they are insufficient to describe the mechanical
behaviour of any particular material.

To complete the specification™of the mechanical properties of a
material we require additional equations, which are called con-
stitutive equations. These are equations which are particular to
individual materials, or classes of materials, and they serve to
distinguish one material from another. The mechanical constitu-
tive equation of a material specifies the dependence of the stress
in'a body on kinematic variables such as a strain tensor or the
rate-of-deformation tensor. Normally thermodynamic variables,
especially temperature, will also be involved, but we shall make
only brief references to these. Constitutive equations are also re-
quired in other branches of continuum physics, such as continuum
thef'rm'odyriamics and continuum electrodynamics, but these prob-
lems are outside the scope of this book, and we shall only discuss
constitutive equations for the stress.

The mechanical behaviour of real materials is very diverse and
complex and it would be impossible, even if it were desirable, to
formulate equations which are capable of determining the stress
in a body under all circumstances. Rather, we seek to establish
equations which describe the most important features of the be-
haviour of a material in a given situation. Such equations can be
regarded as defining ideal materials. It is unlikely that any real
material will conform exactly to any such mathematical model,
but if the ideal material is well chosen its behaviour may give an
excellent approximation to that of the real material which it mod-
els. The model should be selected with the application as well as
the material in mind, and the same real material may be rep-
resented by different ideal materials in different circumstances.
For example, the theory of incompressible viscous fluids gives an
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excellent description of the behaviour of water flowing through
pipes, but is useless for the study of the propagation of sound
waves through water, because for sound-wave propagation a
model which takes into account the compressibility of water is
essential.

Historically, the constitutive equations which define the classi-
cal ideal materials (linear elastic solids, Newtonian viscous fluids.
etc.) have been developed separately. In applications of these
theories this separation is natural. However, at the formulative
stage there are advantages in a unified approach which clarifies
relations between the different special theories. Also it is possible
to formulate some general principles which should be followed in
the construction of constitutive equations.

A first requirement which any constitutive equation must
satisfy is that of dimensional homogeneity: the dimensions of all
terms in a constitutive equation must be the same. Since a con-
stitutive equation always includes constants or functions which
characterize the material under consideration, and these quantities
have dimensions, the dimensional homogeneity requirement is
usually not difficult to satisfy.

Constitutive equations should not depend on the choice of the
coordinate system (although they may be expressed in terms of
components relative to any selected coordinate system). They
therefore take the form of relations between scalars, vectors and
tensors. :

An important restriction on mechanical constitutive equations
is the requirement that the stress response of a body to a defor-
mation is not affected by rigid-body motions, so that the stress in
a body depends only on the change of shape of the body and is
not affected (except for the change in orientation of the stress
field relative to fixed axes) by a superposed motion in which the
body moves as a whole. To formalize this requirement we specify
that if a body undergoes two time-dependent motions, which
differ from each other by a time-dependent rigid-body motion.
then the same stress results from each of these motions. This is
essentially equivalent to saying that constitutive equations are in-
variant under translations and rotations of the frame of reference:
two observers, even if they are in relative motion, will observe the
same stress in a given body. ;

Materials are usually regarded as either solids or fluids, and
fluids are subdivided into liquids and gases. We do not attempt a
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precise definition of this classification; the dividing lines are not
always clear and there are materials which possess both solid-like
and fluid-like properties. The characteristic property of a fluid is
that it cannot support a shearing stress indefinitely, so that if a
shearing stress is applied to a body of fluid and maintained, the
fluid will flow and continue to do so as Jong as the stress remains.
A solid, on the other hand, can be in equilibrium under a shear
stress. Some solids possess a natural configuration which they
adopt in a stress-free state and to which they eventually return if
a stress is imposed and then removed; if a natural configuration
exists it is usually convenient, though not essential, to adopt it as
the reference configuration. Fluids have no natural configuration
and, given sufficient time, will adapt to the shape of any container
" in which they are placed.

8.2 Material symmetry

Most materials possess some form of material symmetry. The
commonest case is that in which the material 1s isotropic; an 1SO-
tropic material possesses no preferred direction and its properties
are the same in all directions. It is impossible to detect the orien-
tation in space of a sphere of isotropic material by performing an
experiment on it. Many real materials are isotropic or nearly so;
these include common fluids like air and water, metals in their
usual polycrystalline form, concrete, sand in bulk, and so on.
Other common materials have strong directional properties; an ex-
ample is wood, whose properties along its grain are quite different
from the properties across the grain. Single crystals of crystalline
materials have directional properties which arise because their
atoms are arranged in regular patterns, and this gives rise to the
various classes of crystal symmetry. A material which possesses a
single preferred direction at every ooint is said to be transversely
isotropic. An example of such a material is 2 composite material
which consists of a matrix reinforced by fibres arranged in parailel
straight lines. Over length scales which are large compared to the.
fibre diamaters and spacings, such a mauteriai may be regarded as
macroscopically homogeneous, and the fibres introduce a preier-
red direction which is a characteristic of the composite rnaterial.
' We consider material symmetries of wo !
reflecticnai.

'pes; rotational and

el
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Rotational symmetry. Suppose a spherical volume element under-
goes the homogeneous deformation illustrated in Fig. 8.1. A typi-
cal particle initially at P, moves to P, and the deformation is
described by the equations

x=F-X (8.1)

where, since the deformation is homogeneous, the components
Fir of F depend only on t.

Now suppose that the element undergoes a second deforma-
tion, which is similar to the first except that the entire deforma-
tion field (but not the body) is rotated through an angle « about
an axis n. Thus if @ is the tensor defined by (6.11), the particle
which is initially at Q - X moves in the second deformation to the
point Q - x, where

O c—F 0% (8.2)

The second deformation is illustrated for the case in which n=e;
in Fig. 8.1(c); in it the particle initially at Q, moves to Q,, where

LP,0Qy= £LP,00Q,=

The deformed sphere has the same shape in the two configura-
tions, but the second is not derived from the first by a rigid
rotation. Although the two deformations (8.1) and (8.2) are re-
lated, they are distinct, and in the absence of appropriate material
symmetry they will give rise to different stress responses. For
example, the forces which accompany a given extension in the

_qdﬁlrectlon OP, will be different from those associated with the
" same extension in the direction OQ,. However, for a given ma-

terial it may happen that for certain rotations the result of rotat-
ing the deformation field through the rotation defined by Q is to

X4 x4 Xo 4

3 X ) i \ Q.x akb

0 1, ( (0] / X Q |
et il s

(a) (b) (c)

Figure 8.1 Rotational symmetry
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produce the same rotation of the stress field. In this case, if the
deformation (8.1) gives rise to a stress tensor T, then the defor-
mation (8.2) gives rise to a stress tensor QT - T - Q. We then say
that the material has material symmetry (relative to the specified
reference configuration) for the rotation determined by Q.

As a simple example, the tensor Q with components Qir,
where

(Qr)=\—

O - O
T ik
— O O

represents an anti-clockwise rotation of magnitude 1o about the
X,-axis. If the material has rotational symmetry for this rotation,
then the force p; required to produce a given extension in the X,
direction has the same magnitude as the force p, required to
produce the same extension in the X, direction.

Reflectional symmetry. Now consider a further homogeneous
deformation of the spherical volume element which is the MIrTor
image of the deformation (8.1), in some plane which for defin-
iteness we take to be the plane X; =0. This deformation is
defined by

— X, Fi; F, Fis =X
X, | =\ 21 F, Fs X5 (8.3)
X3 Fsy Fz, Fis X3
or
Rl'x:F'RI-X (8.4)
where the components of the tensor R, are
-1 0 O
010 (8.5)
30 2 e |

The tensor R, represents a reflection in the (X5, X5) plane. The
deformation is illustrated in Fig. 8.2.

In the absence of material symmetry, the deformations (8.1)
and (8.4) will give rise to two unrelated stress responses. How-
ever, if the effect of reflecting the deformation field in the manner
described is to reverse the sign of the shear stress on the plane



Material symmetry 109

3 Xaa Xy 4
0
R | \ 0, ,\p,
8 i [-X ) &
k! \ 0 \ X 0 Xy
\ J
{a) (b) (c)

Figure 8.2 Reflectional symmetry

x, =0, we say that the material has reflectional symmetry with
respect to this plane, relative to the chosen reference configura-
tion. If the material has this symmetry and the deformation (8.1)
gives rise to the stress T, then the deformation (8.4) gives rise to
the stress R] * T « R, (the transposition of R, in the first factor is
redundant, because R, is symmetric, but is introduced for consis-
tency with the corresponding result for rotational symmetries).

More generally, a reflection in the plane through O normal to
a unit vector n is defmed by a tensor R with components R;;,
where

R=I-2nQ®n, R;=8;,—2nn

It is easily verified that R is a symmetric improper orthogonal

tensor (that is an orthogonal tensor with determinant equal to

—1). A material has reflectional symmetry for reflections in the
planes normal to n if the deformation

R-x=F-R-X (8.6)

gives rise to the stress R' - T - R when the deformation (8.1) gives
rise to the stress T.

Reflectional symmetry with respect to planes normal to the
X,-axis means that the tangential force required to produce a
simple shear in (say) the positive X, direction on the planes X, =
constant, is equal in magnitude but opposite in direction to that
required to produce a shear of the same magnitude in the nega-
tive X, direction on the same planes.

Symmetry groups. The set of tensors, such as the rotation tensors
Q and the reflection tensors R, which define the symmetry prop-
erties of a material, form a group (in the technical algebraic sense
of the term) which is called the symmetry group of the material.
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For an isotropic material, the symmetry group includes all rota-
tions about all possible axes, and reflections in any plane; thus it
is the group of all orthogonal tensors, which is the full orthogonal
group in three dimensions. A material whose symmetry group con-
sists of all rotations but no reflections (the rotation group or the
proper orthogonal group in three dimensions) is said to be hemi-
tropic. For our purpose the distinction between isotropic and
hemitropic materials is not important.

Materials which have fewer material symmetries than an iso-
tropic material are said to be anisotropic. The symmetry group for
an anisotropic material is a subgroup of the full orthogonal group.
A material whose symmetry group includes all rotatinns about
a specified axis is said to be transversely isotropic about that axis.
Various reflectional symmetries may or may not be added; again
the distinctions are not important here.

A materiat which -has reflectional symmetry with respect to
each of three mutually orthogonal planes is said to be orthotropic.
To a good approximation, wood is an example of such a material.

The symmetry group for an orthotropic material is a finite
group, composed of the unit teasor, three refiection tensors, and
their inner products. Other finite subgroups of the full orthogonal
group in three dimensions are symmetry groups for materials with
various kinds of crystal symmetry. The rotations which occur in
these symmetry groups are rotations through multiples of ;7 and
27, Accounts of the crystallographic groups can be found i texts
on crystallography.

For the most part we shall concentrate on isotropy, which is
the simplest and most important case, and make only occasional
references to anisotropic materials.

8.3 Linear elasticity

Many solid materials, and especially the common engineering ma-
terials such as metals, concrete, wood, etc., have the property that
they only undergo very small changes of shape when they are
subjected to the forces which they normally encounter. They also
have a natural shape to which they will return if forces are.ap-
plied to them and then removed (provided that the forces are not
too large). The theory of linear elasticity provides an excellent
model of the mechanical behaviour of such materials.
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We define a linear elastic solid to be a material for which the
internal energy pge per unit volume in the reference configuration
has the following properties:

(a) poe is a function only of the components E; of the infinitesi-
mal strain tensor and is, or may be adequately approximated
by, a quadratic function of these components;

(b) if K is the kinetic energy (7.27) and E is the internal energy
(7.28) in any region R, then the material time derivative of
K+ E 1s equal to the rate at which mechanical work is done
by the surface and body forces acting on R.

It is conventional to denote py,e by W, and to call W the
strain—energy function. Thus (a) states that W has the form

W= %CijkIEi;‘Ekl (8.7)

where C,; are constants. Property (b) is a restatement of the law
of conservation of energy (Section 7.6) with heat flux assumed to
be absent, or neglected. Properties (a) and (b) together state that
all the mechanical work done on @ either creates kinetic energy,
or 1s stored as potential energy (which is called the strain energy)
which depends only on the deformation. The system is con-
servative; in a closed cycle of deformation the strain energy is
stored and then released so that no net work is done on the
body.

The more general case in which W is allowed to depend also
on temperature or entropy, and in which heat flux is permitted,
leads to the theory of linear thermoelasticity. We shall not develop

- this theory.

It should be noted at the outset that a constitutive equation

‘based on (8.7) will necessarily fail to satisfy one of the require-

ments stated in Section 8.1 for, as was shown in Section 6.6, the
components E; do not remain constant in a finite rotation, and so
W as defined by (8.7) must change when a body rotates without
change of shape. This is not reasonable physically. However, if
attention is restricted to motions in which the rotation is small,
then the change in E; is of second order in the rotation compo-
nents. The theory of linear elasticity is essentially an approximate
theory which is valid for values of E; and {); which are small
compared to one. The theory is nevertheless very useful because
the approximation is an excellent one in many applications. It is
consistent with the approximation involved in adopting (8.7) to
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neglect E; compared to one, and this will be done whenever it is
convenient to do so.

Suppose we change from a coordinate system with base vectors
e; to a new coordinate system with base vectors €, such that

=M:e.

[ e

and (M;) is an orthogonal matrix. Then the infinitesimal strain
components E; and E; in the old and new systems are related by
the usual tensor transformation rule

E.=MME., " E.=MME. (8.8)

The strain energy W can also be expressed as a quadratic func-
tion of the components E;, as

) %éijkléijékl (8.9)

However W is a scalar, which is not affected by a change of
coordinate system, and so the expressions (8.7) and (8.9) are the
same. Hence, using (8.8),

C‘pqrrE-pqE-rs ¥ CijklEijEki' = CikaMpi%erkMSIquE—rs
This is an identity for all values of E;, and so
Coars = MMM, M, Gy

Hence G, are components of a fourth-order tensor.

The 34 81 constants Cy, are called elastic constants. They
have the dimensions of stress and their values characterize par-
ticular linear elastic materials. The elastic constants are not all
independent. By interchanging the dummy indices i and j in (8.7),
we obtain

C:k! Ek!

However, E; E,l, and so

C:kl Ekl = %{2((:;;::1 2R Clkl)}EijEkl

Thus Gy may be replaced by 3(Cyy + Cyiq), Which is symmetric
with respect to interchanges of i and j. Hence, without loss of
generality, Cy,, may be assumed to be symmetric with respect to
interchanges of its first two indices. Similarly, C;;, may be as-
sumed to be symmetric with respect to interchanges of its third
and fourth indices. Thus

Gt = Co o e f e I=1 2 ) (8.10)
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The symmetries (8.10) reduce the number of independent elastic
constants to 36. Furthermore, by simultaneously interchanging the
indices { and k and the indices j and [, there follows

W= %CH{;‘E{;'EH = %{%.(Cijkl % Ckh‘j)}EijEk[

Hence no generality is lost by assuming that Cy, also has the
index symmetries

Cia = Cuiij (8.11)

The symmetries (8.11) further reduce the number of independent
elastic constants to 21.

A further requirement on W is that the stored elastic energy
must be positive, so that (8.7) is a positive definite quadratic form
in the E;.

Any material symmetry further reduces the number of inde-
pendent elastic constants. We return to this point below.

So far, property (b) of linear elastic solids has not been emp-
loyed. From (7.31), with e replaced by W/p,, and the heat flux

terms neglected, we have
; DW
o W e (8.12)
ox; po Dt

Since, by (7.7) and (7.8), p/po =1+ O(E;), to the order of approxi-
mation used in small-deformation theory we may replace p by po,
and write

vy, DW
iié‘acj Dt
It was shown in Section 7.6 that T} dv/ox; = T;Dy;, and so
DW
L= (8.13)
Dt

Now, since W depends only on E;, (8.13) gives
aW DE.
TLJD].]:_"—_"—U
and (6.77) then gives, to the required order of approximation,

oW
1.Dy =3_Ei' D;
1



This is an identity which holds for all values of D, and so

oW
i aEU
However, from (8.7) and (8.11),
oW 1 4
s C rs Ers
oE; zaE,-].( parsEpaFr)

= % pars (Sipsqurs 5k SEFSjSqu)
= %(CijrsErs + Cpqijqu)
= C%jrSErs

Hence
Ti;‘ = CijrsErs (8.14)

and this is the constitutive equation for a linear elastic solid. It 1s
- evident that the stress components are linear functions of the
infinitesimal strain components.

An alternative formulation of linear elasticity theory is based
on the assumption that the stress components Tj; are (or can
adequately be approximated by) linear functions of the infinitesi-
mal strain components Ej, so that (8.14) is taken as the starting
point rather than as a consequence of (8.7). In such a formulation
there is no loss of generality in giving Cy, the index symmetries
(8.10), but (8.11) does not obtain unless further assumptions are
made. A material with constitutive equation (8.14) but lacking the
index symmetry (8.11) has the unrealistic property that work can
be extracted from it in a closed cycle of deformation. We there-
fore prefer to base the theory on (8.7), from which (8.11) follows
automatically.

The number of independent elastic constants is further reduced
if the material possesses any material symmetry. Suppose for ex-
ample that the material has the reflectional symmetry with respect
to the (X,, X3) planes which is associated with the tensor R, .
which is defined by (8.5). Since E; =3(F;+F;;)—3§,, it is easily seen
that-the effect of replacing the deformation (8.1) by the deforma-
tion (8.3) is to replace E,, by —E,,, and E,; by —E,;, while
leaving the other components E; unaltered. However, if ®, be-
longs to the symmetry group, W must be unchanged by this sub-
stitution. Hence, if the material has this symmetry, then

W(Eu» Ezzs E33, E237 E31, E12) == W(Elb Ezz, E33> E23) _E31, _Exz)
(8.15)
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and this relation must hold identically for all E;. By writing (8.7)
in full with the above two sets of arguments, or by considering
special cases, it follows from (8.7) and (8.15) that

Ci1:=Criis = Ci222=C1223=C 1233 = Ci322=C1323=Cy333 = 0

Other material symmetries impose further restrictions on the elas-
tic constants. The various possibilities are described in texts on
linear elasticity. We omit the details and proceed to the case of
isotropic materials. _

The symmetry group for isotropic materials includes all proper
orthogonal tensors Q. Suppose, as before, that E; are the compo-
nents of infinitesimal strain which correspond to the deformation
(8.1). Then the corresponding stress components Tj; are given by
(8.14). The infinitesimal strain components which correspond to
the deformation (8.2) are

E,, = Q,&Fq +1Fi—84)Qu = QuuQuEu (8.16)
and the associated stress components are

Fo=g - (8.17)

Now if Q belongs to the symmetry group, then
T;=Q.Q, T (8.18)
and hence, from (8.16), (8.17) and (8.18), _
1,000,000 Py (8.19)

It follows, by comparing (8.14) and (8.19), that
| Cer = 0004 Qe Cron (8.20)

‘and, if the material is isotropic, this must hold for all orthogonal
tensors Q. However, (8.20) then becomes a statement that Cisa
are components of a fourth-order isotropic tensor (Section 3.5).
 The most general fourth-order isotropic tensor is given by (3.37).
Hence G, take the form

Ciir = A8;81q + 88y + 188y (8.21)
and the constitutive equation (8.14) becomes
T;;=A8;Ew + E; + VE;
Since E; = Ej;, no generality is lost by setting v = K, SO that
T;;=A8;Ex +21LE; (8.22)
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or, equivalently, in tensor notation
T=Mtr E+2uE

Equation (8.22) is the constitutive equation for an isotropic linear
elastic solid; such a material is characterized by the two elastic
constants A and p.

We observe that the form (8.21) possesses the index symmetry
Cisie = Cuy- Thus for an isotropic material we arrive at (8.22) re-
gardless of whether we adopt (8.7) or (8.14) as the starting point.

8.4 Newtonian viscous fluids

In experime_flfé on water, air and many othér fluids, it is observed
that in a simple shearing flow (Section 6.10) the shearing stress
on the shear planes is proportional to the shear rate s, to an
extremely good approximation and over a very wide range of
~ shear rates. This behaviour is characteristic of a Newtonian vis-
cous fluid or a linear viscous fluid. This model of fluid behaviour
describes the mechanical properties of marty fluids, including the
commonest fluids, air and water, very well indeed.

We consider fluids with constitutive equations of the form

T =“p(p7 9)8 +Buk{(ps B)Dkl (8-23)

where 0 is the temperature. In a fluid at rest, D,; =0, and (8.23)
reduces to

Tijz_p(ps 6)8ij (8.24)

which is the constitutive equation employed in hydrostatics, with
p(p, 0) representing the hydrostatic pressure. Thus (8.23) specifies
that in a fluid in motion the additional stress over the hydrostatic
pressure is linear in the components of the rate of deformation
tensor. _

If the fluid is isotropic, then arguments similar to those used in
Section 8.3 to reduce (8.14) to (8.22) lead to the conclusion that
B are (like Gy, for an isotropic linear elastic solid) the compo-
nents of a fourth-order isotropic tensor, and then (8.23) takes the
form

T;,={—p(p, 6)+ A(p, G)Dkk}aij +2ulp, G)D_i]‘ (8.25)

or, equivalently

T={-p(p, 0)+A(p, 0)tr DI +2u(p, 6)D
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Here the viscosity coefficients A(p, 8) and w(p, 8) are of course.
not the same as the elastic constants A and w which were intro-
duced in Section 8.3. A particular linear viscous fluid is charac-
terized by the two coefficients A and p.

It was shown in Section 6.9 that D; =0 in a rigid-body motion
and that the superposition of a rigid-body motion on a given
motion does not change the value of D,. Hence the right-hand
side of (8.25) is not affected by a superimposed rigid-body mo-
tion. Therefore the constitutive equation (8.25) has the required
property of being independent of superimposed rigid-body mo-
tions. This is in contrast to the constitutive equation of linear
elasticity theory, which, it was emphasized in Section 8.3, is
necessarily an approximate theory and is valid only for small rota-
tions and deformations. Equation (8.25) is a possible exact con-
stitutive equation for a viscous fluid. In practice, it is found that
(8.25) serves extremely well to describe the mechamcal behaviour
of many fluids.

In fluid mechanics texts it is usual to assume, as we have done
here, that the fluid is isotropic. In fact it can be shown that
- isotropy is a consequence of (8.23) and the requirement that the
stress is not affected by rigid-body motions, and so isotropy need
not be introduced as a separate assumption. We shall demonstrate
this, in a more general context, in Section 10.3. It does not follow
that all fluids are necessarily isotropic. Fluids with anisotropic
properties do exist, but they require more general constitutive
equations than (8.23) for their description.

Several special cases of (8.25) are of interest. If the stress is a
- hydrostatic pressure (see Section 5.9) then

T; =%Tkk8i;' ={"P(P, 6)+(A+ %#—)Dkk}aﬁ

It is often assumed that in such a state of pure hydrostatic stress,
the stress depends only on p and  and not on the dilatation rate
Dy, If this is the case then A +3u =0, and this relation is often
adopted.

If the material is inviscid, then A =0 and p =0, and the con-
stitutive equation reduces to (8.24). The stress in an inviscid fluid
is always hydrostatic.

If the fluid is incompressible, then p is constant and Dy, =0.
Incompressibility is a kinematic constraint which gives rise to a
reaction stress. The reaction to incompressibility is an arbitrary
hydrostatic pressure which can be superimposed on the stress field
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without causing any deformation; this pressure does no work in
any deformation which satisfies the incompressibility constraint.

Such a hydrostatic pressure is not determined by constitutive equa-. . -

tions but can only be found through the equations of motion or
of equilibrium, and the boundary conditions. Thus for an incom-
pressible viscous fluid, (8.25) reduces to

T,;=—p8; +2ur(6)D;;, or T=-pl+2u(6)D (8.26)

where p is arbitrary, p depends only on 6, and the term ADy;
has been absorbed into the arbitrary function p. We note that in
the limit as the material becomes incompressible, D,, — 0 and
A — = in such a way that AD,, tends to a finite limit.

If the fluid is both inviscid and incompressible (such a fiuid is
called an ideal fluid) then

Ty=—péy = ‘o T ==pl (8.27)

where p is arbitrary in the sense that it is not determined by a
constitutive equation.

8.5 Linear viscoelasticity

Many materials (especially materials which are usually described
as ‘plastics’) possess both some of the characteristics of elastic
solids and some of the characteristics of viscous fluids. Such ma-
terials are termed viscoelastic. The phenomenon of viscoelasticity
is illustrated by creep and stress-relaxation experiments. For sim-
plicity, consider the case of simple tension. Suppose a tension Fy is
rapidly applied to an initially stress-free viscoelastic string at time
t =0, and then held, constant, as llustrated in Fig. 8.3(a). The

A& &
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Figure 8.3 Creep curve
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corresponding relation between the elongation e and time ¢ may
be of the form shown in Fig. 8.B(b), with an initial elongation e,
(such as would occur in an elastic material) followed by an in-
creasing elongation under the miaintained load. This illustrates the
phenomenon of creep. If the material is a viscoelastic solid, the
elongation tends to a finite limit e., as t —; if the material is a
viscoelastic fluid, the elongation continues indefinitely.

Alternatively, suppose that at ¢t =0 the string is given an elong-
ation e, and held in this position (Fig. 8.4(a)). The resulting force
response is shown in Fig. 8.4(b); the force rises instantaneously to
F, at t =0 and then decays. This is stress relaxation. For a fluid,
F—0 as t —c; in a solid, F tends to a finite limit F, as t — <.

We consider here only infinitesimal deformations, so that the
use of the infinitesimal strain tensor is appropriate. With the be-
haviour illustrated in Fig. 8.4 as motivation, we assume that an
increment 8E;; in the strain components at time 7 gives rise to
increments 5T,J in the stress components at subsequent times ¢,
the magnitude of these increments depending on the lapse of time
since the strain increment was applied. Thus

8T {t) = Gyt — 1) 8Ey(7) (8.28)

where we expect Gy, to be decreasing functions of ¢—r. The
superposition principle is also assumed, according to which the
total stress at time t is obtained by superimposing the effect at
time t of all the strain increments at times 7 <t. Thus

dEkl(T) 3

ar (8.29)

T, (t)= j:p Giult—1)

_ This is the constitutive equation for linear viscoelasticity. The
functions Gy, are called relaxation functions. If the strain was

7' 3 &

e F
FII
é
0 > : 0 .
(a) t (b) g

Figure 8.4 Stress-relaxation curve
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zero in the remote past, so that E,;— 0 as 7 — —x, (8.29) can be
expressed in an alternative form by carrying out an mteg:ratlon by
parts, as follows: vor

T0 =BG~ | Bu-t{Guue-n}dr  (8:30)

The stress-relaxation functions G, (t —7) have the index sym-
metries Gy = Gy = Gyu, but not the index symmetry Gy = Gy,
unless this is introduced as a further assumption. If the material is
isotropic, then Gy, are components of a fourth-order isotropic
tensor, and, for example, (8.29) reduces to

d kk(T) dEu (7)

SUJ‘ AG—r)—t— d7+2L w(t—1) dr

(8.31)

and only two relaxation functions A(t—17) and u(t—7) are re-
quired to describe the material.
The inverse relation to (8.29) is

E(r)= J Tl T)d—@df (8.32)

The functions J;,(t —7) are known as creep functions; they have
the same index symmetries as G;,(t—7) and are components of a
fourth-order isotropic tensor in the case in which the material is
isotropic.

Linear viscoelasticity has the same limitations as linear elastic-
ity: it is necessarily an approximate theory which can only be
applicable when the strain and rotation components are small.

In a sense, linear elasticity can be regarded as the limiting case
of linear viscoelasticity in which the relaxation functions are inde-
pendent of t; and a Newtonian viscous fluid as the limiting case
of an isotropic linear viscoelastic material in which the relaxation
functions A(t—7) and w(t—7) take the forms AS(t—7) and
w6 (t— 1) respectively, where A and p are the viscosity coefficients
and 6(t—7) is the Dirac delta function.

8.6 Problems

1. A linear elastic material has reflectional symmetry for reflec-
tions in the (X5, X3), (X5, X;) and (X,, X-) planes (such a mater-
ial is said to be orthotropic). Show that it has nine independent
elastic constants.
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2. Show that a transversely isotropic linear elastic solid has five
independent elastic constants, and find the form of W for a linear
elastic solid which is transversely isotropic with respect to the
X5-axis.

3. From the constitutive equation (8.22) and the equation of mo-
tion (7.22), with b=0, derive Navier’s equations for an 1SOtropic
linear elastic solid:

o%u, |
TS~ pye;
k

A+
( ”') X, 90X, dx

4. In simple tension of an isotropic linear elastic solid.

TW=EE, T),=T;3=T,3= T3, =T, =0, and E,, = E;; = —vE,,,
where E is Young’s modulus and v is Poisson’s ratio. Prove that
E=p(@BA+2u)/(A+ p)and v =3\/(A + ). Show that the constitutive
equation (8.22) can be expressed in the form

Ezé{(l-i-v)'l‘—vf tr T}

A+2u>0.

6. In plane stress or in plane strain, the equilibrium equations
reduce to (5.42). Show that these equations are identically
satisfied if the stress components are expressed in terms of

Airy’s stress function x, as Ty, = 8%x/dx3, T,, =0>x/0x>,

T,= —a?x/axl dx,. Prove that in plane stress or plane strain of an

_+ 1sotropic linear elastic solid, x satisfies the biharmonic equation

82 2N
V“X:(a +—‘1—) =)
Xy dxs

7. From the constitutive equation (8.26) and the equations of

‘motion (7.22) derive the Navier-Stokes equations for an incom-

pressible Newtoman fluid

op d*v, (av Y, )
+ = +,
ax; dx; 0X; at ax;

8. A Voigt solid is a model viscoelastic material which in uniaxial
tension has the stress—strain relation o = Ey(e +t,€), where E,
and t, are constants. Sketch the creep and stress-relaxation curves
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for this material. Show that the relaxation function is
E,{1+1t, 6(t— 7)}. Give a three-dimensional generalization of the

above constitutive equation for an incompressible isotropic matenial.. ...

9. A Maxwell fluid is a model viscoelastic material which in uni-
axial tension has the stress—strain relation E,¢ = o+ oft,. Sketch
the creep and stress relaxation curves. Show that the stress relax-
ation function is E; exp {—(1—7)/t,}. Hence give a three-
dimensional generalization for an isotropic incompressible material
in the integral form (8.31).
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